3 resultados para 090400 CHEMICAL ENGINEERING

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commercial process simulators are increasing interest in the chemical engineer education. In this paper, the use of commercial dynamic simulation software, D-SPICE® and K-Spice®, for three different chemical engineering courses is described and discussed. The courses cover the following topics: basic chemical engineering, operability and safety analysis and process control. User experiences from both teachers and students are presented. The benefits of dynamic simulation as an additional teaching tool are discussed and summarized. The experiences confirm that commercial dynamic simulators provide realistic training and can be successfully integrated into undergraduate and graduate teaching, laboratory courses and research. © 2012 The Institution of Chemical Engineers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A CSSL- type modular FORTRAN package, called ACES, has been developed to assist in the simulation of the dynamic behaviour of chemical plant. ACES can be harnessed, for instance, to simulate the transients in startups or after a throughput change. ACES has benefited from two existing simulators. The structure was adapted from ICL SLAM and most plant models originate in DYFLO. The latter employs sequential modularisation which is not always applicable to chemical engineering problems. A novel device of twice- round execution enables ACES to achieve general simultaneous modularisation. During the FIRST ROUND, STATE-VARIABLES are retrieved from the integrator and local calculations performed. During the SECOND ROUND, fresh derivatives are estimated and stored for simultaneous integration. ACES further includes a version of DIFSUB, a variable-step integrator capable of handling stiff differential systems. ACES is highly formalised . It does not use pseudo steady- state approximations and excludes inconsistent and arbitrary features of DYFLO. Built- in debug traps make ACES robust. ACES shows generality, flexibility, versatility and portability, and is very convenient to use. It undertakes substantial housekeeping behind the scenes and thus minimises the detailed involvement of the user. ACES provides a working set of defaults for simulation to proceed as far as possible. Built- in interfaces allow for reactions and user supplied algorithms to be incorporated . New plant models can be easily appended. Boundary- value problems and optimisation may be tackled using the RERUN feature. ACES is file oriented; a STATE can be saved in a readable form and reactivated later. Thus piecewise simulation is possible. ACES has been illustrated and verified to a large extent using some literature-based examples. Actual plant tests are desirable however to complete the verification of the library. Interaction and graphics are recommended for future work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aston University offers a Foundation year in Engineering and Applied Science. The purpose of this programme is to prepare people with the necessary skills and knowledge required to enrol on an undergraduate programme in Engineering and Applied Science. It is acknowledged there are many misconceptions as to what engineering is. This is further compounded by the lack of knowledge of the different engineering disciplines both by pre-university students and careers teachers [1]. In order to ameliorate this lack of knowledge, Aston University offers a unique programme where students are given the opportunity to have a ?taste? of four Engineering Disciplines: Mechanical Engineering, Electrical Engineering, Chemical Engineering and Computer Science. Alongside these ?taster? sessions, the students study a Professional Skills module where they are expected to keep a portfolio of skills. In their portfolios they comment on their strengths and weakness in relation to six skill areas: independent enquirer, self-manager, effective participator, creative thinker, reflective learner and team worker. The portfolio gives them the opportunity to perform a self-skills audit and identify areas where they have strengths and areas which require work to improve to become a competent professional engineer. They also have talks from engineers who discuss with them their careers and the different aspects of engineering. The purpose of the ?taster? sessions, portfolio and the talks are to encourage the students to critically examine their career aspirations and choose an engineering undergraduate programme which best suits their ambitions and potential skills. The feedback from students has been very positive. The ?taster? sessions have enabled them to make an informed choice as to the undergraduate programme they would like to study. The programme has given them the technical skills and knowledge to enrol on an undergraduate programme and also the skills and knowledge to be a successful learner.